首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   463篇
  免费   81篇
  国内免费   2篇
  2021年   6篇
  2019年   6篇
  2017年   5篇
  2016年   14篇
  2015年   18篇
  2014年   13篇
  2013年   11篇
  2012年   19篇
  2011年   20篇
  2010年   17篇
  2009年   12篇
  2008年   20篇
  2007年   10篇
  2006年   15篇
  2005年   15篇
  2004年   15篇
  2003年   14篇
  2002年   18篇
  2001年   20篇
  2000年   15篇
  1999年   15篇
  1998年   6篇
  1997年   5篇
  1996年   5篇
  1995年   4篇
  1993年   8篇
  1992年   9篇
  1991年   17篇
  1990年   10篇
  1989年   5篇
  1988年   8篇
  1987年   13篇
  1986年   10篇
  1985年   12篇
  1984年   5篇
  1983年   9篇
  1982年   10篇
  1981年   5篇
  1980年   7篇
  1979年   11篇
  1978年   5篇
  1977年   5篇
  1976年   5篇
  1975年   5篇
  1971年   5篇
  1970年   11篇
  1968年   9篇
  1967年   11篇
  1966年   4篇
  1965年   3篇
排序方式: 共有546条查询结果,搜索用时 437 毫秒
51.
Initial studies of grass–endophyte mutualisms using Schedonorus arundinaceus cultivar Kentucky‐31 infected with the vertically transmitted endophyte Epichloë coenophiala found strong, positive endophyte effects on host‐grass invasion success. However, more recent work using different cultivars of S. arundinaceus has cast doubt on the ubiquity of this effect, at least as it pertains to S. arundinaceus–E. coenophiala. We investigated the generality of previous work on vertically transmitted Epichloë‐associated grass invasiveness by studying a pair of very closely related species: S. pratensis and E. uncinata. Seven cultivars of S. pratensis and two cultivars of S. arundinaceus that were developed with high‐ or low‐endophyte infection rate were broadcast seeded into 2 × 2‐m plots in a tilled, old‐field grassland community in a completely randomized block design. Schedonorus abundance, endophyte infection rate, and co‐occurring vegetation were sampled 3, 4, 5, and 6 years after establishment, and the aboveground invertebrate community was sampled in S. pratensis plots 3 and 4 years after establishment. Endophyte infection did not enable the host grass to achieve high abundance in the plant community. Contrary to expectations, high‐endophyte S. pratensis increased plant richness relative to low‐endophyte cultivars. However, as expected, high‐endophyte S. pratensis marginally decreased invertebrate taxon richness. Endophyte effects on vegetation and invertebrate community composition were inconsistent among cultivars and were weaker than temporal effects. The effect of the grass–Epichloë symbiosis on diversity is not generalizable, but rather specific to species, cultivar, infection, and potentially site. Examining grass–endophyte systems using multiple cultivars and species replicated among sites will be important to determine the range of conditions in which endophyte associations benefit host grass performance and have subsequent effects on co‐occurring biotic communities.  相似文献   
52.
Fourteen-day-old bean seedlings were cultured in nutrient solution containing Cu2+ ions at various concentrations (50 and 75 μM of CuSO4) for 3 days. This excess of copper induced a reduction in the water volume absorbed by the plants. Moreover, this reduction was accompanied by an increase of the amount of copper taken up by the roots. Analysis by native gel electrophoresis of cell wall peroxidase activities in the roots revealed a stimulation of two anionic isoforms (A2 and A3) under cupric stress conditions. Moreover, the activity of phenylalanine ammonia lyase (EC. 4.3.1.5), which plays an important role in plant defense, was enhanced. Copper-treated bean roots showed modifications in the cell walls of various tissues. Label for lignin, callose, and suberin with berberine-aniline blue revealed abnormal cell wall thickenings in the endodermis, the phloem, and the xylem, especially in plants treated with 75 μM CuSO4.  相似文献   
53.
54.
55.
Formalin fixation has been the standard method for conservation of clinical specimens for decades. However, a major drawback is the high degradation of nucleic acids, which complicates its use in genome-wide analyses. Unbiased identification of biomarkers, however, requires genome-wide studies, precluding the use of the valuable archives of specimens with long-term follow-up data. Therefore, restoration protocols for DNA from formalin-fixed and paraffin-embedded (FFPE) samples have been developed, although they are cost-intensive and time-consuming. An alternative to FFPE and snap-freezing is the PAXgene Tissue System, developed for simultaneous preservation of morphology, proteins, and nucleic acids. In the current study, we compared the performance of DNA from either PAXgene or formalin-fixed tissues to snap-frozen material for genome-wide DNA methylation analysis using the Illumina 450K BeadChip. Quantitative DNA methylation analysis demonstrated that the methylation profile in PAXgene-fixed tissues showed, in comparison with restored FFPE samples, a higher concordance with the profile detected in frozen samples. We demonstrate, for the first time, that DNA from PAXgene conserved tissue performs better compared with restored FFPE DNA in genome-wide DNA methylation analysis. In addition, DNA from PAXgene tissue can be directly used on the array without prior restoration, rendering the analytical process significantly more time- and cost-effective.  相似文献   
56.
57.
58.
We report the development and optimization of reagents for in-solution, hybridization-based capture of the mouse exome. By validating this approach in a multiple inbred strains and in novel mutant strains, we show that whole exome sequencing is a robust approach for discovery of putative mutations, irrespective of strain background. We found strong candidate mutations for the majority of mutant exomes sequenced, including new models of orofacial clefting, urogenital dysmorphology, kyphosis and autoimmune hepatitis.  相似文献   
59.
60.
The embryonic genome is formed by fusion of a maternal and a paternal genome. To accommodate the resulting diploid genome in the fertilized oocyte dramatic global genome reorganizations must occur. The higher order structure of chromatin in vivo is critically dependent on architectural chromatin proteins, with the family of linker histone proteins among the most critical structural determinants. Although somatic cells contain numerous linker histone variants, only one, H1FOO, is present in mouse oocytes. Upon fertilization H1FOO rapidly populates the introduced paternal genome and replaces sperm-specific histone-like proteins. The same dynamic replacement occurs upon introduction of a nucleus during somatic cell nuclear transfer. To understand the molecular basis of this dynamic histone replacement process, we compared the localization and binding dynamics of somatic H1 and oocyte-specific H1FOO and identified the molecular determinants of binding to either oocyte or somatic chromatin in living cells. We find that although both histones associate readily with chromatin in nuclei of somatic cells, only H1FOO is capable of correct chromatin association in the germinal vesicle stage oocyte nuclei. This specificity is generated by the N-terminal and globular domains of H1FOO. Measurement of in vivo binding properties of the H1 variants suggest that H1FOO binds chromatin more tightly than somatic linker histones. We provide evidence that both the binding properties of linker histones as well as additional, active processes contribute to the replacement of somatic histones with H1FOO during nuclear transfer. These results provide the first mechanistic insights into the crucial step of linker histone replacement as it occurs during fertilization and somatic cell nuclear transfer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号